
NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 1 -

UNIT -2

LEXICAL ANALYSIS

2.1 OVER VIEW OF LEXICAL ANALYSIS

o To identify the tokens we need some method of describing the possible tokens

that can appear in the input stream. For this purpose we introduce regular expression, a
notation that can be used to describe essentially all the tokens of programming
language.

o Secondly , having decided what the tokens are, we need some mechanism to

recognize these in the input stream. This is done by the token recognizers, which are
designed using transition diagrams and finite automata.

2.2 ROLE OF LEXICAL ANALYZER

the LA is the first phase of a compiler. It main task is to read the input character

and produce as output a sequence of tokens that the parser uses for syntax analysis.

Upon receiving a ‘get next token’ command form the parser, the lexical analyzer

reads the input character until it can identify the next token. The LA return to the parser

representation for the token it has found. The representation will be an integer code, if the

token is a simple construct such as parenthesis, comma or colon.

LA may also perform certain secondary tasks as the user interface. One such task is

striping out from the source program the commands and white spaces in the form of blank,

tab and new line characters. Another is correlating error message from the compiler with the

source program.

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 2 -

2.3 LEXICAL ANALYSIS VS PARSING:

Lexical analysis Parsing
A Scanner simply turns an input String (say a
file) into a list of tokens. These tokens
represent things like identifiers, parentheses,
operators etc.

The lexical analyzer (the "lexer") parses
individual symbols from the source code file
into tokens. From there, the "parser" proper
turns those whole tokens into sentences of
your grammar

A parser converts this list of tokens into a
Tree-like object to represent how the tokens
fit together to form a cohesive whole
(sometimes referred to as a sentence).

A parser does not give the nodes any
meaning beyond structural cohesion. The
next thing to do is extract meaning from this
structure (sometimes called contextual
analysis).

2.4 TOKEN, LEXEME, PATTERN:

Token: Token is a sequence of characters that can be treated as a single logical entity.

Typical tokens are,

1) Identifiers 2) keywords 3) operators 4) special symbols 5)constants

Pattern: A set of strings in the input for which the same token is produced as output. This set

of strings is described by a rule called a pattern associated with the token.

Lexeme: A lexeme is a sequence of characters in the source program that is matched by the
pattern for a token.
Example:

Description of token

Token lexeme pattern

const const const

if if If

relation <,<=,= ,< >,>=,> < or <= or = or < > or >= or letter
followed by letters & digit

i pi any numeric constant

nun 3.14 any character b/w “and “except"

literal "core" pattern

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 3 -

A patter is a rule describing the set of lexemes that can represent a particular token in source

program.

2.5 LEXICAL ERRORS:

Lexical errors are the errors thrown by your lexer when unable to continue. Which means

that there's no way to recognise a lexeme as a valid token for you lexer. Syntax errors, on the

other side, will be thrown by your scanner when a given set of already recognised valid

tokens don't match any of the right sides of your grammar rules. simple panic-mode error

handling system requires that we return to a high-level parsing function when a parsing or

lexical error is detected.

Error-recovery actions are:

i. Delete one character from the remaining input.

ii. Insert a missing character in to the remaining input.

iii. Replace a character by another character.

iv. Transpose two adjacent characters.

2.6 DIFFERENCE BETWEEN COMPILER AND INTERPRETER

 A compiler converts the high level instruction into machine language while an
interpreter converts the high level instruction into an intermediate form.

 Before execution, entire program is executed by the compiler whereas after
translating the first line, an interpreter then executes it and so on.

 List of errors is created by the compiler after the compilation process while an
interpreter stops translating after the first error.

 An independent executable file is created by the compiler whereas interpreter is
required by an interpreted program each time.
The compiler produce object code whereas interpreter does not produce object code.
In the process of compilation the program is analyzed only once and then the code is

generated whereas source program is interpreted every time it is to be executed and

every time the source program is analyzed. hence interpreter is less efficient than

compiler.

 Examples of interpreter: A UPS Debugger is basically a graphical source level

debugger but it contains built in C interpreter which can handle multiple source files.

example of compiler: Borland c compiler or Turbo C compiler compiles the programs

written in C or C++.

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 4 -

2.7 REGULAR EXPRESSIONS

Regular expression is a formula that describes a possible set of string.

Component of regular expression..

X the character x

. any character, usually accept a new line

[x y z] any of the characters x, y, z, …..

R? a R or nothing (=optionally as R)

R* zero or more occurrences…..

R+ one or more occurrences ……

R1R2 an R1 followed by an R2

R2R1 either an R1 or an R2.
A token is either a single string or one of a collection of strings of a certain type. If we view
the set of strings in each token class as an language, we can use the regular-expression

notation to describe tokens.

Consider an identifier, which is defined to be a letter followed by zero or more letters

or digits. In regular expression notation we would write.

Identifier = letter (letter | digit)*

Here are the rules that define the regular expression over alphabet .

o is a regular expression denoting { € }, that is, the language containing only the

empty string.
o For each ‘a’ in ∑, is a regular expression denoting { a }, the language with only

one string consisting of the single symbol ‘a’ .
o If R and S are regular expressions, then

(R) | (S) means LrULs

R.S means Lr.Ls

R* denotes Lr*

2.8 REGULAR DEFINITIONS

For notational convenience, we may wish to give names to regular expressions and

to define regular expressions using these names as if they were symbols.

Identifiers are the set or string of letters and digits beginning with a letter. The

following regular definition provides a precise specification for this class of string.

Example-1,
Ab*|cd? Is equivalent to (a(b*)) | (c(d?))

Pascal identifier

Letter - A | B | ……| Z | a | b |……| z|

Digits - 0 | 1 | 2 | …. | 9

Id - letter (letter / digit)*

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 5 -

Recognition of tokens:
We learn how to express pattern using regular expressions. Now, we must study how to take

the patterns for all the needed tokens and build a piece of code that examins the input string

and finds a prefix that is a lexeme matching one of the

patterns.

Stmt if expr then stmt

| If expr then else stmt

| є

Expr term relop term

| term

Term id

|number

For relop ,we use the comparison operations of languages like Pascal or SQL where = is

“equals” and < > is “not equals” because it presents an interesting structure of lexemes.

The terminal of grammar, which are if, then , else, relop ,id and numbers are the names of

tokens as far as the lexical analyzer is concerned, the patterns for the tokens are described

using regular definitions.

digit -->[0,9]

digits -->digit+

number -->digit(.digit)?(e.[+-]?digits)?

letter -->[A-Z,a-z]

id -->letter(letter/digit)*

if --> if

then -->then

else -->else
relop --></>/<=/>=/==/< >

In addition, we assign the lexical analyzer the job stripping out white space, by recognizing

the “token” we defined by:

ws (blank/tab/newline)
+

Here, blank, tab and newline are abstract symbols that we use to express the ASCII

characters of the same names. Token ws is different from the other tokens in that ,when we

recognize it, we do not return it to parser ,but rather restart the lexical analysis from the

character that follows the white space . It is the following token that gets returned to the

parser.

Lexeme Token Name Attribute Value

Any ws _ _

if if _

then then _

else else _

Any id id pointer to table entry

Any number number pointer to table
entry

< relop LT

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 6 -

<= relop LE

= relop ET

< > relop NE

2.9 TRANSITION DIAGRAM:
Transition Diagram has a collection of nodes or circles, called states. Each state

represents a condition that could occur during the process of scanning the input looking for a

lexeme that matches one of several patterns .

Edges are directed from one state of the transition diagram to another. each edge is labeled

by a symbol or set of symbols.

If we are in one state s, and the next input symbol is a, we look for an edge out of state s

labeled by a. if we find such an edge ,we advance the forward pointer and enter the

state of the transition diagram to which that edge leads.

Some important conventions about transition diagrams are
1. Certain states are said to be accepting or final .These states indicates that a lexeme has
been found, although the actual lexeme may not consist of all positions b/w the lexeme
Begin and forward pointers we always indicate an accepting state by a double circle.
2. In addition, if it is necessary to return the forward pointer one position, then we shall

additionally place a * near that accepting state.

3. One state is designed the state ,or initial state ., it is indicated by an edge labeled “start”

entering from nowhere .the transition diagram always begins in the state before any input

symbols have been used.

As an intermediate step in the construction of a LA, we first produce a stylized

flowchart, called a transition diagram. Position in a transition diagram, are drawn as circles

and are called as states.

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 7 -

The above TD for an identifier, defined to be a letter followed by any no of letters

or digits.A sequence of transition diagram can be converted into program to look for the

tokens specified by the diagrams. Each state gets a segment of code.

 If = if

Then = then

Else = else

Relop = < | <= | = | > | >=

Id
Num

=
=

letter (letter | digit) *|
digit |

2.10 AUTOMATA

An automation is defined as a system where information is transmitted and used for

performing some functions without direct participation of man.

1, an automation in which the output depends only on the input is called an

automation without memory.
2, an automation in which the output depends on the input and state also is called as
automation with memory.

3, an automation in which the output depends only on the state of the machine is

called a Moore machine.

3, an automation in which the output depends on the state and input at any instant of

time is called a mealy machine.

2.11 DESCRIPTION OF AUTOMATA

1, an automata has a mechanism to read input from input tape,

2, any language is recognized by some automation, Hence these automation are

basically language ‘acceptors’ or ‘language recognizers’.

Types of Finite Automata

Deterministic Automata

Non-Deterministic Automata.

2.12 DETERMINISTIC AUTOMATA

A deterministic finite automata has at most one transition from each state on any

input. A DFA is a special case of a NFA in which:-

1, it has no transitions on input € ,

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 8 -

2, each input symbol has at most one transition from any state.

DFA formally defined by 5 tuple notation M = (Q, ∑, δ, qo, F), where

Q is a finite ‘set of states’, which is non empty.

∑ is ‘input alphabets’, indicates input set.

qo is an ‘initial state’ and qo is in Q ie, qo, ∑, Q

F is a set of ‘Final states’,

δ is a ‘transmission function’ or mapping function, using this function the

next state can be determined.

The regular expression is converted into minimized DFA by the following procedure:

Regular expression → NFA → DFA → Minimized DFA

The Finite Automata is called DFA if there is only one path for a specific input from

current state to next state.

a

a
So S2

b

S1

From state S0 for input ‘a’ there is only one path going to S2. similarly from S0 there

is only one path for input going to S1.

2.13 NONDETERMINISTIC AUTOMATA

 A NFA is a mathematical model that consists of

 A set of states S.

 A set of input symbols ∑.

 A transition for move from one state to an other.

 A state so that is distinguished as the start (or initial) state.

 A set of states F distinguished as accepting (or final) state.

 A number of transition to a single symbol.

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 9 -

 A NFA can be diagrammatically represented by a labeled directed graph, called a

transition graph, In which the nodes are the states and the labeled edges represent

the transition function.

 This graph looks like a transition diagram, but the same character can label two or

more transitions out of one state and edges can be labeled by the special symbol €

as well as by input symbols.

 The transition graph for an NFA that recognizes the language (a | b) * abb is

shown

2.14 DEFINITION OF CFG

It involves four quantities.

CFG contain terminals, N-T, start symbol and production.

 Terminal are basic symbols form which string are formed.

 N-terminals are synthetic variables that denote sets of strings

 In a Grammar, one N-T are distinguished as the start symbol, and the set of

string it denotes is the language defined by the grammar.

 The production of the grammar specify the manor in which the terminal and
N-T can be combined to form strings.

 Each production consists of a N-T, followed by an arrow, followed by a string

of one terminal and terminals.

2.15 DEFINITION OF SYMBOL TABLE

 An extensible array of records.

 The identifier and the associated records contains collected information about

the identifier.

FUNCTION identify (Identifier name)

RETURNING a pointer to identifier information contains

 The actual string

 A macro definition

 A keyword definition

 A list of type, variable & function definition

 A list of structure and union name definition

 A list of structure and union field selected definitions.

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 10 -

2.16 Creating a lexical analyzer with Lex

2.17 Lex specifications:

A Lex program (the .l file) consists of three parts:

declarations

%%

translation rules

%%

auxiliary procedures

1. The declarations section includes declarations of variables,manifest constants(A manifest

constant is an identifier that is declared to represent a constant e.g. # define PIE 3.14),

and regular definitions.

2. The translation rules of a Lex program are statements of the form :

p1 {action 1}

p2 {action 2}

p3 {action 3}
… …
… …

where each p is a regular expression and each action is a program fragment describing

what action the lexical analyzer should take when a pattern p matches a lexeme. In Lex

the actions are written in C.

3. The third section holds whatever auxiliary procedures are needed by the

actions.Alternatively these procedures can be compiled separately and loaded with the

lexical analyzer.

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 11 -

Note: You can refer to a sample lex program given in page no. 109 of chapter 3 of the book:

Compilers: Principles, Techniques, and Tools by Aho, Sethi & Ullman for more clarity.

2.18 INPUT BUFFERING
The LA scans the characters of the source pgm one at a time to discover tokens.

Because of large amount of time can be consumed scanning characters, specialized buffering

techniques have been developed to reduce the amount of overhead required to process an

input character.

Buffering techniques:

1. Buffer pairs

2. Sentinels

The lexical analyzer scans the characters of the source program one a t a time to discover

tokens. Often, however, many characters beyond the next token many have to be examined

before the next token itself can be determined. For this and other reasons, it is desirable for

thelexical analyzer to read its input from an input buffer. Figure shows a buffer divided into

two haves of, say 100 characters each. One pointer marks the beginning of the token being

discovered. A look ahead pointer scans ahead of the beginning point, until the token is

discovered .we view the position of each pointer as being between the character last read and

thecharacter next to be read. In practice each buffering scheme adopts one convention either

apointer is at the symbol last read or the symbol it is ready to read.

Token beginnings look ahead pointerThe distance which the lookahead pointer may

have to travel past the actual token may belarge. For example, in a PL/I program we may see:

DECALRE (ARG1, ARG2… ARG n) Without knowing whether DECLARE is a keyword or

an array name until we see the character that follows the right parenthesis. In either case, the

token itself ends at the second E. If the look ahead pointer travels beyond the buffer half in

which it began, the other half must be loaded with the next characters from the source file.

Since the buffer shown in above figure is of limited size there is an implied constraint on

how much look ahead can be used before the next token is discovered. In the above example,

ifthe look ahead traveled to the left half and all the way through the left half to the middle,

we could not reload the right half, because we would lose characters that had not yet been

groupedinto tokens. While we can make the buffer larger if we chose or use another

buffering scheme,we cannot ignore the fact that overhead is limited.

